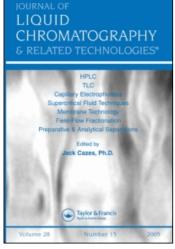
This article was downloaded by:


On: 24 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

Reversed-Phase Ion-Pair Chromatography of Nitrogen-Bridged Compounds

A. Shalaby^a; Zs. Budvári-Bárány^a; Gy. Szász^a

^a Institute of Pharmaceutical Chemistry Semmelweis Medical University, Budapest, Hungary

To cite this Article Shalaby, A., Budvári-Bárány, Zs. and Szász, Gy.(1985) 'Reversed-Phase Ion-Pair Chromatography of Nitrogen-Bridged Compounds', Journal of Liquid Chromatography & Related Technologies, 8: 6, 1071 — 1091

To link to this Article: DOI: 10.1080/01483918508067129

URL: http://dx.doi.org/10.1080/01483918508067129

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REVERSED-PHASE ION-PAIR CHROMATO-GRAPHY OF NITROGEN-BRIDGED COMPOUNDS

A. Shalaby, Zs. Budvári-Bárány, Gy. Szász Institute of Pharmaceutical Chemistry Semmelweis Medical University Budapest, Hungary

ABSTRACT

The retention times and resolution factors of certain types of pharmacologically active nitrogen-bridged compounds have been investigated using reversed-phase operations of high-performance ion-pair chromatography. Factors studied included the effect of the pH of the mobile phase, the influence of the nature and concentrations of the mobile phase components, and the effects of various counter ions. Numerous examples of separations are presented.

INTRODUCTION

Reversed-phase ion-pair chromatography (RPIPC) is based on a liquid-liquid partition technique usually called ion-pair chromatography or ion-pair partition;

^{*} Presented in Eastern Analytical Symposium 1984 New York, U.S.A.

its use in classical LC and liquid-liquid extraction is considerably older. Ion-pair chromatography was rapidly accepted as a new HPLC method due to its unique advantages wide-ranging applicability, high selectivity, etc. Although ion-pair chromatography can be carried out in either normal or reversed phase, RPIPC is the more popular.

In this work the increase in selectivity for N-bridged compounds in the presence of an ion-pair forming agent will be shown. As a result of ion-pair formation, some pairs of very closely related compounds can be separated.

EXPERIMENTAL

Materials

All the model substances were synthetized in our laboratory /1,2/. Their identification and quality control were performed via melting point determination and chromatography.

All chemicals and solvent were of analytical grade (Merck), and were used without further purification.

Chromatography

The HPLC apparatus was a LIQUOCHROM Model 2010 (Labor Mim, Budapest, Hungary). A variable wavelength detector was used, and the column effluent was monitored between 270 and 330 nm. The reversed-phase (Ultrasphere IP) $^{\text{C}}_{18}$ column measured 250 x 4.6 mm, and was prepacked with material with a particle size of 5/um (Beckman). 20/ul of

sample solution (0.1 mg/ml in methanol) was injected. Eluents of roughly equal elution strengths (methanol-water 70:30, acetonitrile-water 50:50 and terahydrofuran-water 40:60) were applied, with and without different concentrations of camphor sulphonic acid (CSA) and sodium lauryl sulphate (NaLS). The flow rate was 0.7 ml/min. All experiments were run at 25 °C.

RESULTS AND DISCUSSION

For about 40 compounds for structures, see Tables 1-4, two types of ion-pair forming agent (CSA and NaLS) were used at fix pH; different concentrations of each of the counter ions were applied. Figures 1 and 2 show that the optimum concentration was 0.005 M for both ion-pair forming agents. This optimum concentration was applied at different pH's. As expected, the ion-pairing was higher at low pH. Figures 3 and 4 show that (in the range pH 3-7) pH 3 is most suitable for the ion-pairing process as concerns the magnitude of the R values and the selectivity Table 5 lists the capacity factors (k), plate numbers (N) and column efficiencies (H) of the tested compounds, with and without the use of the counter ion, under the same conditions. The results (N and H) prove that NaLS is more suitable than CSA for these tested compounds. The same conclusion may be drawn following calculation of resolution factors (R_s) and selectivities (∞) for some pairs of the tested compounds, with methanol

20
January
24
16:38
At:
loaded

	6)	Н	H	н	Ħ	Ħ
	C ₈	н	н	н	Н	н
SUBSTANCE	ر _ع	Н	н	н	Н	$_{\rm CH_3}$
ODEL	ر9	Н	н	Н	CH3	щ
OF OF R	63	H	щ	CH_2	H	н
STRUCTURE R ₅ R ₄ R ₄	25	H	CH3	H	н	Н
	Number of compd.		Ø	m	4	5

$$^{\mathrm{CH}}_{3}$$

Table.2.
STRUCTURE OF MODEL SUBSTANCES

Number of compd.	^C 2	C3	c ₆	C ₉
21	Н	H	Н	<u>u</u>
22	^{CH} 3	Н	Н	H
23	Ħ	CH ₃	H	74
24	ñ	H	^{C11} 3	ä
25	^{0H} 3	CH3	Н	<u> </u>
26	CH ₃	H	CH ₃	3
27	^{CH} 3	Н	Н	^{CH} 3
28	Н	^{CH} 3	CH ₃	<u>u</u>
29	CH ₃	C 2 ^H 5	CH ₃	ΞΞ

Table . **3**Structure of model substances

Number of compound

33.
$$n = 4$$
31.a C_6 He

31.b
$$C_{\gamma}$$
 Me 31.c C_{β} Me

34.
$$n = 1$$

$$35. n = 2$$

36.
$$n = 3$$

$$37. n = 4$$

38.
$$n = 1$$

39.
$$n = 2$$

40.
$$n = 3$$

41.
$$n = 4$$

(continued)

Table 3 (continued)

Number of compound

42.
$$n = 1$$
43. $n = 2$
44. $n = 3$
45. $n = 4$

50.
$$n = 1$$
51. $n = 2$
52. $n = 3$
53. $n = 4$
50.a C_6 Me
50.b C_{12} Me
52.a C_{12} Me

Table . 4. Structure of model substances

number of compd.	c_2	N ₃
54•	Н	Н
55 <i>•</i>	CH ₃	H
56.	Н	CH ₃
57•	^{CH} 3	CH ₃
5S.	CII ₃	0 ₂ H ₅
5 9.	CH ₃	⁰ 3 ^{II} 7
60.	CH ₃	с ₄ н ₉
61.	С ₂ Н ₅	Cl ₁ 3
62 .	°2 ¹¹ 5	с ₂ н ₅
63.	с ₂ н ₅	°3 ^H 7
64.	^C 2 ^H 5	C ₄ H ₉

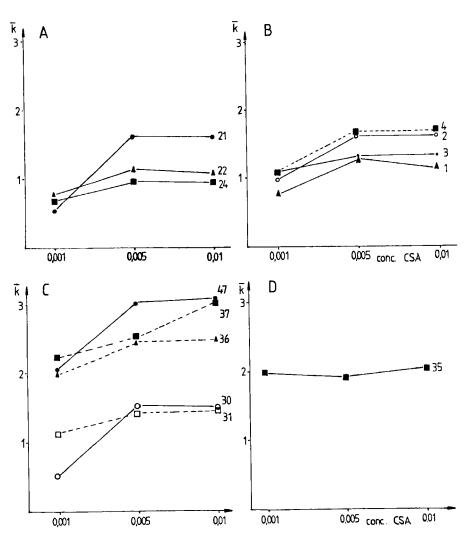


FIGURE 1. Relationship between k' and CSA Concentration (pH = 3)

- A = Two Ring System with Saturated A Ring
- B = Two Ring System with Unsaturated A Ring
- C = Three Ring System with Saturated A Ring
- D = Three Ring System with Unsaturated A Ring

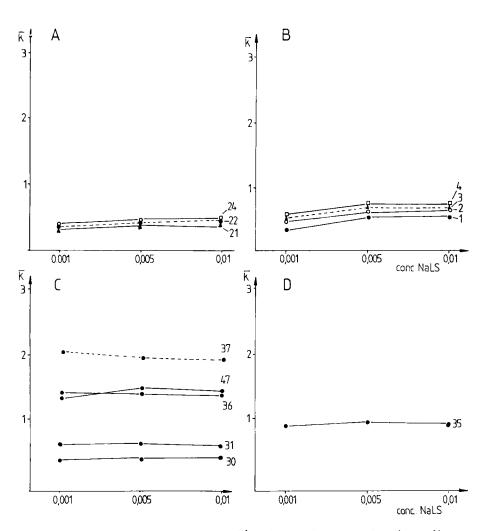


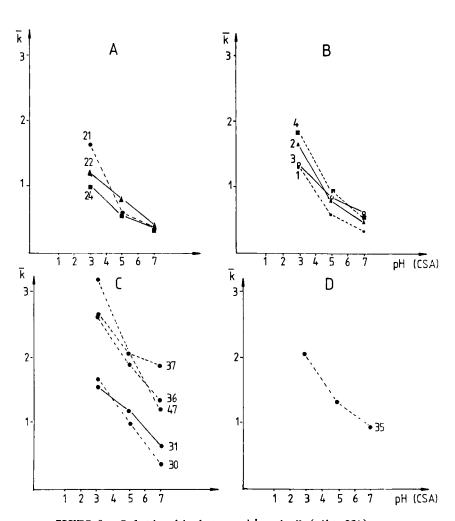
FIGURE 2. Relationship between k' and NaLS Concentration (pH = 6)

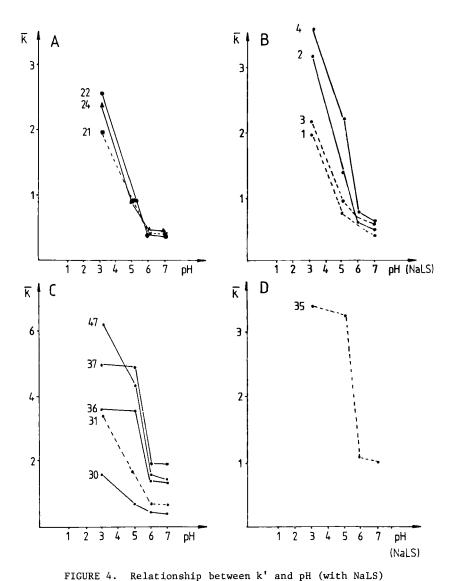
A = Two Ring System with Saturated A Ring

B = Two Ring System with Unsaturated A Ring

C = Three Ring System with Saturated A Ring

D = Three Ring System with Unsaturated A Ring




FIGURE 3. Relationship between k' and pH (wiht CSA)

A = Two Ring System with Saturated A Ring

B = Two Ring System with Unsaturated A Ring

C = Three Ring System with Saturated A Ring

D = Three Ring System with Unsaturated A Ring

A = Two Ring System with Saturated A Ring
B = Two Ring System with Unsaturated A Ring
C = Three Ring System with Saturated A Ring
D = Three Ring System with Unsaturated A Ring

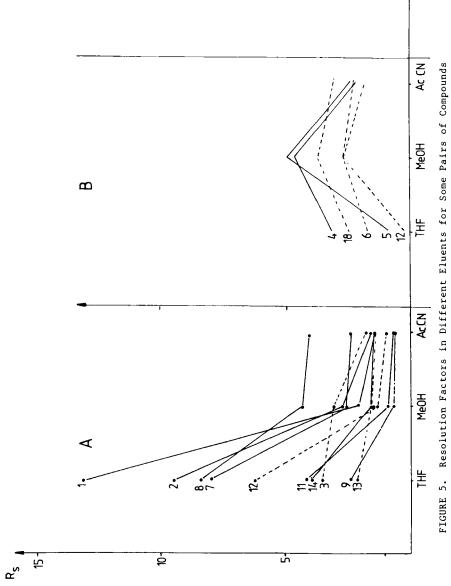


FIGURE 5. Resolution Factors in Different Eluents for Some Pairs of Compounds A - Optimal Eluent: THF $\,$ B - Optimal Eluent: Methanol

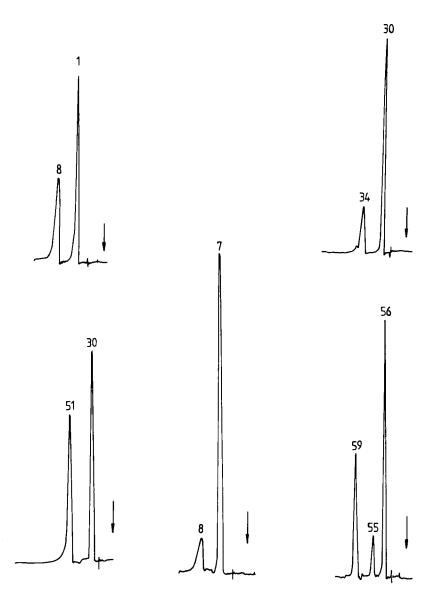


FIGURE 6. Separation of Some Pairs of Compounds by RPIPC Stationary Phase: (Ultrasphere 1 P) 5 μm C $_{18}$ Column Mobile Phase: Methanol-Water 70:30 + 0,00r M NaLS Flow Rate: 0,7 ml/min

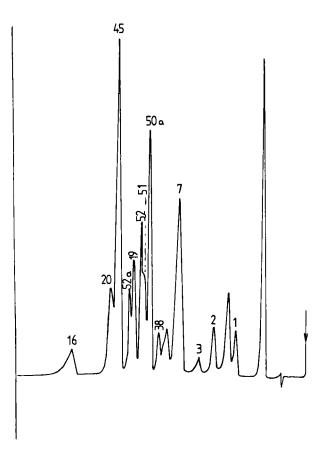


FIGURE 7. The Separation of the Mixture of Some N-Bridged Compounds by Gradient Linear Elution Technique

Stationary Phase: Nucleosil 5 SA/nm

Mobile Phase: a- 0,1 Mol $\mathrm{KH_2PO_4}$ in Methanol-Water 40:60

b- 0,01 Mol KH₂PO₄ in Methanol-Water 40:60

Flow Rate: 1 ml/min

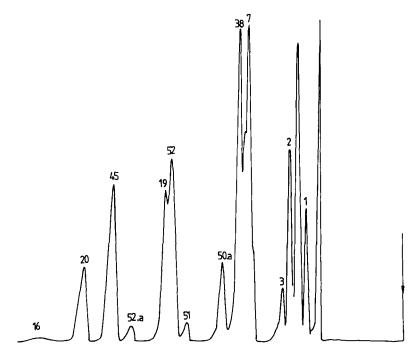


FIGURE 8. Separation of the Mixture of Some N-Bridged Compounds by RPIPC Stationary Phase: (Ultrasphere 1P), 5 μ m, C $_{18}$ Column Mobile Phase: THF-Water (40:60) + 0,005 M Na.L.S. Flow Rate: 0,5 ml/min

as mobile phase at the same pH (Table 6). The resolution factors (R_s) for some pairs were larger when THF was used (Fig. 5A), while for other pairs they were larger for methanol (Fig. 5B), for each pair the lowest R_s was found with MeCN. Some chromatograms with methanol as mobile phase are presented in Fig. 6.

Figures 7 and 8 demonstrate that the efficiencies of separation in gradient elution /3/ and in RPIPC are very similar for a given mixture of compounds.

Downloaded At: 16:38 24 January 2011

Table 5

Chromatographic data of tested compounds

Number	CH-H0CH	HD	3H20H-H20 70:30	70:30	CH2 01	сн, он-н, о 70:30	70:30
of compound	70:30	+	0.005 M CSA	CSA	+	0.005 M Nals	(als
1	, K	K	z	н	K	R	Н
-7	0.318	1.333	1157	0.216	2.0	3600	690.0
2	0.454	1.666	1130	0.221	3.2	4096	0.061
~	0.591	1.333	1196	0.209	2.2	4096	0.061
4	0.5	1.7333	1186	0.211	3.6	4761	0.053
. 2	0.5	1.266	1128	0.222	ω.	3249	0.077
. 9	0.456	1.066	1154	0.217	2.13	3927	0.064
7	0.591	1.2	1355	0.184	1.8	3136	0.079
ω	0.727	2.2	1304	0.192	4.4	4199	0.059
6	0.682	2.2	1369	0.1826		3844	0.065
) 10	1.000	1.666	1300	0.192		4844	0.052
27	0.272	1.666	1178	0.212	2.0	3600	0.069
22	0.318	1.20	1121	0.223		5184	0.048

0.054	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.053	0.064	0.089	0.116	0.229	960.0	0.087	0.081	0.115	0.123	0.118	0.1066	0.085	0.064	0.084	0.1	0.129	0.540	0.089	0.055
4624	4515 2811	4761	3893	2787	2152	1089	2601	2862	3072	2177	2025	2119	2346	2940	3893	2959	2500	1936	4624	2787	4515
	4.6 3.133																				
0.223	0.219 0.00	0.158	0.179	0.209	0.193	0.223	0.211	0.195	0.127	961.0	0.179	0.138	0.216	0.134	0.208	0.224	0.181	0.185	0.175	0.159	0.207
1119	1⊥44 1 א √ ר ר	1576	1400	1191	1295	1120	1187	1282	1970	1276	1400	1810	1159	1870	1202	1117	1384	1348	1427	1576	1205
1.000		1.4	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	.866	•	•	•
0.363	0.0	0.636	0.363	0.591	0.636	606.0	1.258	1.3548	1.1934	1.272	1.68	1.290	1.13636	1.6774	1.5483	1.4516	1.00	0.4	0.56	0.58	1.34
24	C V.	27	30	31	34	35	35 a	35b	35c	36	37	39	47	4 7a	47b	47c	51	54	55	56	59

Table 6

The resolution factor and selectivity factor of some pairs of tested compounds at different mobile phase

Number of pairs	сн3 он-н	сн ₃ он-н ₂ о 70:30	CH ₃ OH-H ₂ O 70:30 + 0.005 M CSA	0 70:30 M CSA	CH ₃ OH-H ₂ O + 0.005 M	сн ₃ он-н ₂ о 70:30 + 0.005 м ив LS	Accn-H2 + 0.005	AcCN-H ₂ O 50:50 + 0.005 M Nals	THF-H ₂ 0 + 0.005	THF-H ₂ 0 40:60 + 0.005 M Nals
	er S	૪	я. 83	8	ਸ਼ 8	8	ਲ 8	8	EG EG	8
1(4+24)	0.528	0.726	6.0	0.577	2.57	999.0	1.5	0.708	9.4	0.3410
2(10+27)	1.35	0.636	0.5	0.840	2.0	0.75	1.33	0.77	13.2	0.2644
3(5+25)	0.0	0.0	0.4	0.789	3.0	0.608	1.6	99.0	3.5	0.564
4(1+8)	0.667	0.4374	1.35	0.605	4.5	0.454	2.0	0.56	3.08	90110
5(7+8)	0.511	0.8129	2.1	0.545	4.87	0.409	2.25	0.52	0.63	0.9446
6(1+2)	0.42	0.700	0.55	0.800	2.57	0.625	1.71	0.8	1.58	0.840
7(56+59)	2.4	0.432	0.0	0.428	6. 8	0.261	2.4	0.409	ı	ı
8(55+56)	0.132	0.962	0.14	0.937	3.27	0.5	1.125	0.75	ı	1
9(35+47)	0.695	0.799	4. 0	0.646	2.529	0.543	2.307	9.0	7.98	0.395
10(30+51)	2.111	0.363	2.37	0.735	4.23	0.4	3.93	0.4	8.365	0.3827
11(35+51)	0.333	606.0	0.333	0.911	0.64	0.85	0.625	0.857	2.08	0.808
12(30+31)	0.723	0.6142	1.333	0.92	3.6	0.471	3.00	0.466	2.29	0.657
13(34+35)	0.25	669.0	0.3	06.0	9.0	0,823	0.818	0.80	4.14	0.491
14(30+34)	6.0	0.571	1.3	0.893	2.53	0.571	2.14	0.58	0.164	0.973
15(36+37)	1.05	0.757	0.05	986.0	1.425	0.72	1.25	0.75	1.714	0.857
16(35+37)	2.2	0.541	0.818	0.775	1.5	0.68	1.25	0.75	3.91	0.678
17(34+36)	1.75	0.500	0.15	0.709	1.2	0.777	0.818	0.80	6.28	0.389

REFERENCES

- 1. Mészáros Z. et al.: Arzneim. Forsch. 22. 815 (1972)
- 2. Kökösi J. et al.: Heterocyclic. Chem. 19. 909 (1982)
- 3. Shalaby A. et al: J. of Liq. Chromatogr. 7. 1151 (1984)